Может ли кто-нибудь помочь мне посеять это: ключевая ошибка: ни один из [int64index...] dtype='int64] не находится в Столбцах
I'm trying to shuffle my indices using the np.random.shuffle() method, but I keep getting an error that I don't understand. I'd really appreciate it if someone could help me puzzle this out. Thank you!
Вот мой код:
#Goal: Preprocess the Data to Predict Excessive Employee absence #Import Libraries import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler raw_csv_data= pd.read_csv('Absenteeism-data.csv') print(raw_csv_data) df= raw_csv_data.copy() print(display(df)) pd.options.display.max_columns=None pd.options.display.max_rows=None print(display(df)) print(df.info()) df=df.drop(['ID'], axis=1) print(display(df.head())) #Our goal is to see who is more likely to be absent. Let's define #our targets from our dependent variable, Absenteeism Time in Hours print(df['Absenteeism Time in Hours']) print(df['Absenteeism Time in Hours'].median()) targets= np.where(df['Absenteeism Time in Hours']>df['Absenteeism Time in Hours'].median(),1,0) print(targets) df['Excessive Absenteeism']= targets print(df.head()) #Let's Separate the Day and Month Values to see if there is correlation #between Day of week/month with absence print(type(df['Date'][0])) df['Date']= pd.to_datetime(df['Date'], format='%d/%m/%Y') print(df['Date']) print(type(df['Date'][0])) #Extracting the Month Value print(df['Date'][0].month) list_months=[] print(list_months) print(df.shape) for i in range(df.shape[0]): list_months.append(df['Date'][i].month) print(list_months) print(len(list_months)) #Let's Create a Month Value Column for df df['Month Value']= list_months print(df.head()) #Now let's extract the day of the week from date df['Date'][699].weekday() def date_to_weekday(date_value): return date_value.weekday() df['Day of the Week']= df['Date'].apply(date_to_weekday) print(df.head()) df= df.drop(['Date'], axis=1) print(df.columns.values) reordered_columns= ['Reason for Absence', 'Month Value','Day of the Week','Transportation Expense', 'Distance to Work', 'Age', 'Daily Work Load Average', 'Body Mass Index', 'Education', 'Children', 'Pets', 'Absenteeism Time in Hours', 'Excessive Absenteeism'] df=df[reordered_columns] print(df.head()) #First Checkpoint df_date_mod= df.copy() print(df_date_mod) #Let's Standardize our inputs, ignoring the Reasons and Education Columns #Because they are labelled by a separate categorical criteria, not numerically print(df_date_mod.columns.values) unscaled_inputs= df_date_mod.loc[:, ['Month Value','Day of the Week','Transportation Expense','Distance to Work','Age','Daily Work Load Average','Body Mass Index','Children','Pets','Absenteeism Time in Hours']] print(display(unscaled_inputs)) absenteeism_scaler= StandardScaler() absenteeism_scaler.fit(unscaled_inputs) scaled_inputs= absenteeism_scaler.transform(unscaled_inputs) print(display(scaled_inputs)) print(scaled_inputs.shape) scaled_inputs= pd.DataFrame(scaled_inputs, columns=['Month Value','Day of the Week','Transportation Expense','Distance to Work','Age','Daily Work Load Average','Body Mass Index','Children','Pets','Absenteeism Time in Hours']) print(display(scaled_inputs)) df_date_mod= df_date_mod.drop(['Month Value','Day of the Week','Transportation Expense','Distance to Work','Age','Daily Work Load Average','Body Mass Index','Children','Pets','Absenteeism Time in Hours'], axis=1) print(display(df_date_mod)) df_date_mod=pd.concat([df_date_mod,scaled_inputs], axis=1) print(display(df_date_mod)) df_date_mod= df_date_mod[reordered_columns] print(display(df_date_mod.head())) #Checkpoint df_date_scale_mod= df_date_mod.copy() print(display(df_date_scale_mod.head())) #Let's Analyze the Reason for Absence Category print(df_date_scale_mod['Reason for Absence']) print(df_date_scale_mod['Reason for Absence'].min()) print(df_date_scale_mod['Reason for Absence'].max()) print(df_date_scale_mod['Reason for Absence'].unique()) print(len(df_date_scale_mod['Reason for Absence'].unique())) print(sorted(df['Reason for Absence'].unique())) reason_columns= pd.get_dummies(df['Reason for Absence']) print(reason_columns) reason_columns['check']= reason_columns.sum(axis=1) print(reason_columns) print(reason_columns['check'].sum(axis=0)) print(reason_columns['check'].unique()) reason_columns=reason_columns.drop(['check'], axis=1) print(reason_columns) reason_columns=pd.get_dummies(df_date_scale_mod['Reason for Absence'], drop_first=True) print(reason_columns) #%% print(df_date_scale_mod.columns.values) print(reason_columns.columns.values) df_date_scale_mod= df_date_scale_mod.drop(['Reason for Absence'], axis=1) print(df_date_scale_mod) reason_type_1= reason_columns.loc[:, 1:14].max(axis=1) reason_type_2= reason_columns.loc[:, 15:17].max(axis=1) reason_type_3= reason_columns.loc[:, 18:21].max(axis=1) reason_type_4= reason_columns.loc[:, 22:].max(axis=1) print(reason_type_1) print(reason_type_2) print(reason_type_3) print(reason_type_4) print(df_date_scale_mod.head()) df_date_scale_mod= pd.concat([df_date_scale_mod, reason_type_1,reason_type_2, reason_type_3, reason_type_4], axis=1) print(df_date_scale_mod.head()) print(df_date_scale_mod.columns.values) column_names= ['Month Value','Day of the Week','Transportation Expense', 'Distance to Work','Age','Daily Work Load Average','Body Mass Index', 'Education','Children','Pets','Absenteeism Time in Hours', 'Excessive Absenteeism', 'Reason_1', 'Reason_2', 'Reason_3', 'Reason_4'] df_date_scale_mod.columns= column_names print(df_date_scale_mod.head()) column_names_reordered= ['Reason_1', 'Reason_2', 'Reason_3', 'Reason_4','Month Value','Day of the Week','Transportation Expense', 'Distance to Work','Age','Daily Work Load Average','Body Mass Index', 'Education','Children','Pets','Absenteeism Time in Hours', 'Excessive Absenteeism'] df_date_scale_mod=df_date_scale_mod[column_names_reordered] print(display(df_date_scale_mod.head())) #Checkpoint df_date_scale_mod_reas= df_date_scale_mod.copy() print(df_date_scale_mod_reas.head()) #Let's Look at the Education column now print(df_date_scale_mod_reas['Education'].unique()) #This shows us that education is rated from 1-4 based on level #of completion print(df_date_scale_mod_reas['Education'].value_counts()) #The overwhelming majority of workers are highschool educated, while the rest have higher degrees #We'll create our dummy variables as highschool and higher education df_date_scale_mod_reas['Education']= df_date_scale_mod_reas['Education'].map({1:0, 2:1, 3:1, 4:1}) print(df_date_scale_mod_reas['Education'].unique()) print(df_date_scale_mod_reas['Education'].value_counts()) #Checkpoint df_preprocessed= df_date_scale_mod_reas.copy() print(display(df_preprocessed.head())) #Split Inputs from targets scaled_inputs_all= df_preprocessed.loc[:,'Reason_1':'Absenteeism Time in Hours'] print(display(scaled_inputs_all.head())) print(scaled_inputs_all.shape) targets_all= df_preprocessed.loc[:,'Excessive Absenteeism'] print(display(targets_all.head())) print(targets_all.shape) #Shuffle Inputs and targets shuffled_indices= np.arange(scaled_inputs_all.shape[0]) np.random.shuffle(shuffled_indices) shuffled_inputs= scaled_inputs_all[shuffled_indices] shuffled_targets= targets_all[shuffled_indices]
Вот в чем ошибка:
KeyError Traceback (most recent call last) in 1 shuffled_indices= np.arange(scaled_inputs_all.shape[0]) 2 np.random.shuffle(shuffled_indices) ----> 3 shuffled_inputs= scaled_inputs_all[shuffled_indices] 4 shuffled_targets= targets_all[shuffled_indices] ~\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key) 2932 key = list(key) 2933 indexer = self.loc._convert_to_indexer(key, axis=1, -> 2934 raise_missing=True) 2935 2936 # take() does not accept boolean indexers ~\Anaconda3\lib\site-packages\pandas\core\indexing.py in _convert_to_indexer(self, obj, axis, is_setter, raise_missing) 1352 kwargs = {'raise_missing': True if is_setter else 1353 raise_missing} -> 1354 return self._get_listlike_indexer(obj, axis, **kwargs)[1] 1355 else: 1356 try: ~\Anaconda3\lib\site-packages\pandas\core\indexing.py in _get_listlike_indexer(self, key, axis, raise_missing) 1159 self._validate_read_indexer(keyarr, indexer, 1160 o._get_axis_number(axis), -> 1161 raise_missing=raise_missing) 1162 return keyarr, indexer 1163 ~\Anaconda3\lib\site-packages\pandas\core\indexing.py in _validate_read_indexer(self, key, indexer, axis, raise_missing) 1244 raise KeyError( 1245 u"None of [{key}] are in the [{axis}]".format( -> 1246 key=key, axis=self.obj._get_axis_name(axis))) 1247 1248 # We (temporarily) allow for some missing keys with .loc, except in KeyError: "None of [Int64Index([560, 320, 405, 141, 154, 370, 656, 26, 444, 307,\n ...\n 429, 542, 676, 588, 315, 284, 293, 607, 197, 250],\n dtype='int64', length=700)] are in the [columns]"
Что я уже пробовал:
Я пытался использовать разделитель=',' и delim_whitespace=0 (два решения, которые я все равно не понял), когда я сделал свою переменную raw_csv_data в начале, так как я видел, что это решение другой проблемы, но она продолжала выдавать ту же ошибку